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Abstract

In this project we developed and completely solved a simple math-
ematical model that describes motion of avalanche in n dimensions.
First, we considered a discrete 1-D model in which the mass of moving
snow is presented in a form of “snow blocks” lined up on an inclined
plane separated by a certain distance. We solved this 1-D model ex-
actly by applying 1-D kinematic equations and using the conservation
of linear momentum. With the information and data gathered from
the solution of this model, we could formulate and solve a most gen-
eral n-dimensional avalanche model, which is mostly applied to the
realistic case of n = 2. As the result, we derived that the avalanche
slides down with a constant acceleration a = g sin θ/(1 + 2n), the size
of the avalanche x ∼ at2, and the mass of the avalanche m ∼ xn ∼ t2n.

1 Introduction

An avalanche occurs when a dense layer of accumulated snow is triggered
by a (natural or artificial) force or energy causing it to flow down rapidly in
an inclined surface [1]. There are several factors that can contribute to the
probability of an avalanche; according to the National Snow and Ice Data
Center, wind speed and direction, steepness of slope, vegetation, terrain, the
weather and temperature can increase the likelihood of such incident [2].
Although big avalanches mostly occur during and after huge snowstorms in
the mountain areas, it is still considered to be one of the most dangerous
catastrophes people might encounter in life, especially for mountain skiers
and for people living in the mountain sides [3]. As a matter of fact, based
on Colorado Avalanche Information Centers statistical report, from 1993 to
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Figure 1: Motion of avalanche in 1-D model.

2016 an average of 27 fatalities in the U.S. due to avalanche has been reported
[4]. In this paper, the propagation of an avalanche from the starting zone
to the runout zone in 1-D, 2-D and n-D model of an inclined plane will be
investigated. At the same time, give people a deeper understanding of how
avalanches work, and also provide a model that can contribute to the safety
of the people.

In 1-D, the avalanche model is represented as a set of blocks on an inclined
plane. Each block has the same mass and distance between them. When the
topmost block begins to move, it overcomes the distance to the second block;
due to inelastic collision the two blocks will move as one unit of mass sliding
down to the following Nth block, repeating the same situation making the
mass increase as more blocks merge. The action of the model ends when all
the blocks are one and have finished their movement with a complete stop.
In the 1-D model, kinematics for constant acceleration, conservation of linear
momentum, and summation was used to derive the general form of equation
for initial velocity and velocity before a block hits the next block, of masses
represented by N -blocks sliding down a frictionless slope. In 2-D model the
avalanche model can be represented as a set of blocks on an inclined surface.
The blocks are arranged in the form of a triangle. The topmost block is the
angle of the triangle. The bottom of the surface is the base of the triangle.
Starting from the first block, each subsequent line increases in geometrical
progression. The distance between the lines of the blocks is the same. The
action of the model ends when all the blocks are one and have finished their
movement with a complete stop. Using the information we acquired from the
first model, we introduced three postulates to solve an n-dimensional model
describing the motion of an avalanche.
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2 Theory Outlines

We start with a 1-D discrete model by finding the velocity of the avalanche as
a function of the number of “snow blocks” that are involved into the motion.
To do so, two different velocities will be introduced: VN and UN . VN is the
velocity of N blocks just right before they hit the next (N + 1) block; UN
is the initial velocity of N blocks which they acquired after (N − 1) blocks
hit the N th block, see Figure 1. During the time while N blocks accelerates
down and travel the distance l they will increase their velocity according to
the standard constant acceleration motion equation

V 2
N = U2

N + 2al, (1)

where l is the distance between the blocks and a is the acceleration in the
system, for a frictionless motion a = g sin θ, where θ is the inclination angle.

The snow blocks have a linear momentum as they accelerate down the
plane towards the following block. During the collision, the total linear mo-
mentum of the system is conserved. So we can write:

mN+1UN+1 = mNVN , (2)

where mN+1 is the mass of the (N+1) blocks, and UN+1 is its initial velocity;
similarly, mN is the velocity of the first N blocks and VN is its velocity just
before it hits the next (N + 1)th block. From the Eq. (2) for a 1-D model:
mN = m0N , the initial velocity of (N+1) blocks before the collision can be
written as

U2
N+1 =

N2

(N + 1)2
V 2
N . (3)

To find UN and VN as a function of N , a certain pattern can be determined.
We solve Eqs.(1) and (3) as a system of two recursive equations with the
U1 = 0 initial condition. The solution can be sketched as follows (for the
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first four blocks):

U2
1 = 0,

V 2
1 = 2al,

U2
2 = 12

22
V 2
1 = 1

22
2al,

V 2
2 = 1

22
2al + 2al = 2al

(
1
22

+ 1
)
,

U2
3 = 22

32
V 2
2 = 22

32

(
12

22
2al + 2al

)
= 2al

(
12

32
+ 22

32

)
,

V 2
3 = 2al

(
12

32
+ 22

32
+ 32

32

)
,

U2
4 = 2al

(
12

42
+ 22

42
+ 32

42

)
,

V 2
4 = 2al

(
12

42
+ 22

42
+ 32

42
+ 42

42

)
,

(4)

The pattern can be easily recognized, so for VN we can conclude:

V 2
N = 2al

(
12

N2
+

22

N2
+

32

N2
+ ...+

N2

N2

)
, (5)

or

VN =

√
2al

N2
(12 + 22 + 32 + ...+N2) =

√
2al

N2
· N(N + 1)(2N + 1)

6
, (6)

where we used the well known formula for the sum of the squares of the first
N natural numbers, finally we got

VN = V1

√
(N + 1)(2N + 1)

6N
, (7)

UN = V1

√
(N − 1)(2N − 1)

6N
, (8)

where V1 =
√

2al. One of the conclusions we can derive from the Eqs. (7)
and (8) is the correlation between the avalanche’s velocity and it’s mass, at
large N :

V 2 ∼ N ∼ m, (9)

where m is a mass of the avalanche. In 1-D model the mass the avalanche is
proportional to the length of the avalanche m ∼ x, so we can conclude

V 2 ∼ x, (10)

which corresponds to a constant acceleration motion.
Using the information gathered above, we can formulate three postulates

that will help us to describe the motion of an avalanche in n dimensions:
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(1) The proportionality of mass to its length give us a constant; thus, we
can write the equation:

m = constant · xn = c · xn, (11)

where n is the dimension of the model. For example, in two dimensions
m ∼ x2.

(2) The velocity of the avalanche model can be written as the rate of change
of the position with respect to time:

V =
dx

dt
. (12)

(3) The avalanche can be described using the second Newton’s law as

dp

dt
= mgsinθ, (13)

where dp/dt is the rate at which the momentum of the avalanche
changes, mg sin θ is net force acting on the avalanche, θ is the incli-
nation angle, and g is the free fall gravity acceleration.

Now let us solve the model we formulated above. The momentum of the
avalanche p is

p = mV = constant · xnV. (14)

We can rewrite the second Newton’s law (13) as

dp

dt
=
d(mV )

dt
= mg sin θ (15)

If we substitute the mass of the avalanche as cxn and cancel the constant c
we will get

d(xnV )

dt
= xng sin θ. (16)

This is a differential equation which can be solved by multiply the both sides
of the equation by xnV :

(xnV )
d(xnV )

dt
= gsinθ(x2nV ). (17)
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The left and right sides of this equation can be integrated as

(xnV )
d(xnV )

dt
=

d
dt

(xnV )2

2
(18)

and

(x2n)
dx

dt
=

1

2n+ 1

d

dt

(
x2n+1

)
. (19)

Finally after integration we get

(xnV )2

2
=

gsinθ

1 + 2n
x2n+1 + constant, (20)

where constant is the constant of integration. At the very begin of the
avalanche motion the avalanche’s velocity should be zero, the same as the
avalanche length, therefore we conclude that constant = 0.

After we cancel x2n on the both sides of equation (20) we get

V 2

2
=

gsinθ

1 + 2n
x. (21)

To find the acceleration of the avalanche we can take the time derivative from
the both sides of equation (21):

V · dV
dt

=
gsinθ

1 + 2n
· dx
dt
. (22)

As the result we got the avalanche slides down with a constant acceleration
rate a = dV/dt

a =
gsinθ

1 + 2n
. (23)

It is interesting to note that the acceleration we got is lower than the naive
g sin θ by a factor of (2n + 1), this is due to the fact that while avalanche
slides down its mass increases.

Finally the time dependence of the velocity, length, and mass of the
avalanche is:

v = a · t ∼ t, (24)

where velocity increases linearly with time t;

x =
a · t2

2
∼ t2, (25)
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where the size of the avalanche increases as t2; and

m = c ·
(
at2

2

)n
∼ t2n, (26)

where the mass increases as t2n.

3 Results

During the process of deriving the general equation for 1-D avalanche model,
it was found that there’s a dependence between avalanche’s velocity and it’s
mass. In other words, the mass increases as V 2 as follows from Eq. (9).
Furthermore, we proved that the mass of avalanche is proportional to the
size of the avalanche. For the fact that as the blocks descend down the
plane due to gravity, it will gain momentum and will accumulate mass as
it merges with the blocks along its path. This accumulation of mass will
increase the size of the avalanche. We use this idea to formulate and solve
a n-dimensional avalanche model, where mass increases as the avalanche
size in power n, where n is the dimension of the model. By applying this
idea, along with velocity as a rate of change in position over time, and the
impulse-momentum theorem, acceleration of the avalanche was found. As the
result, we derived that the avalanche slides down with a constant acceleration
a = g sin θ/(1 + 2n), the size of the avalanche x ∼ at2, and the mass of the
avalanche m ∼ xn ∼ t2n.

What is the dimension of a realistic avalanche? At the first glance, any
avalanche should be considered as a two dimensional (n = 2) system, in this
case its acceleration will be

a =
1

5
g sin θ (27)

and this is the main result of this work. However, it is possible to introduce
a fractional dimension of the avalanche. For example, the effect of compress-
ibility of snow may change the effective dimension of the avalanche as

m ∼ ρ(x)x2n, (28)

where ρ(x) is the density of the snow in the avalanche, which may depend on
the avalanche size x. From the most general point of view, the snow in the
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avalanche can be compressed as the avalanche moves down and increases in
size as

ρ(x) ∼ xε, (29)

where ε is a positive constant defining the compressibility of the snow. If this
is the case, the avalanche acceleration will be

a =
1

5 + ε
g sin θ. (30)

Another opportunity is to introduces an actual fractional dimension of the
avalanche and try to describe the avalanche as a fractal. Both of these
opportunities are subjects for the future studies.

The authors are grateful to Prof. Roman Senkov and Prof. Joshua Tan
for fruitful discussions and to the LaGuardia Honors program for the support.
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