
Size of Neutron Stars and White Dwarfs

Camille Enderlin and Lenin Nolasco

March 25, 2023

Abstract

In this paper we explore the ways in which energy due to gravity
and due to Fermi gas contribute to the unique dimensions of Neutron
Stars and White Dwarfs. We found that the minimum radius of a
Neutron Star is approximately 10 km and the minimum radius of a
White Dwarf is approximately 8,000 km.

1 Introduction

White Dwarfs and Neutron Stars are great examples of extremely dense col-
lections of matter in the universe. Both are formed by the collapse of stars.
The density and pressure found in both these stellar objects is much greater
than anything that could be reproduced in a laboratory, so the measure-
ments found by studying these objects provides information about physics
fundamentals within such extreme environments.

White Dwarfs are formed by the collapse of low-mass stars and are com-
posed of electron degenerate matter. They are the left-over core remnants
of low mass stars that no longer sustain nuclear fusion. Within the layers
of a main sequence star, Hydrogen is fused into Helium, and then Helium is
fused into Carbon. Increased pressure caused by the nuclear fusion inside the
star causes layers to expand, and then the star becomes unstable and bursts.
White Dwarfs are mostly carbon and are very hot, but not hot enough to
fuse carbon into anything else. Without any more nuclear fusion happening
inside the star to create an outward pressure, electron degeneracy pressure is
what stops White Dwarfs from gravitational collapse. The maximum mass
of a white dwarf is known as the Chandrasekhar limit, which is 1.44M�.
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The next densest collection of matter after a White Dwarf is a Neutron
Star. Neutron Stars are essentially very dense balls of neutrons. The only
stellar object more dense would be a black hole. Neutron stars result from
the collapse of massive stars, and due to their high mass, the compression due
to gravity surpasses that of White Dwarfs. In Neutron Stars, electrons and
protons get fused together creating neutrons. Neutron degeneracy pressure
is what keeps Neutron Stars from collapsing even further, as neutrons cannot
be compressed indefinitely.

In this paper we aim to explain the mass-density ratio of White Dwarfs
and Neutron Stars by breaking down the various aspects of density and
pressure, and providing calculations for the pressure due to factors such as
gravity and Fermi gas. We will also utilize phase space to discuss Fermi level
and provide equations regarding the number of states or particles in each
object.

2 Theory Outline

We are aiming to find the minimum radius for White Dwarf and Neutron
stars, as Pauli’s principle already tells us that only so many particles can fit
into a given quantum mechanical state.1 For simplicity, all of our equations
will be made with the assumption that both White Dwarfs and Neutron Stars
are uniform spherical distributions of matter.

EGravity(R,M) + EFermi−gas(R,M) = Etotal(R,M) (1)

To find the total energy of either a White Dwarf of a Neutron star, we
must sum the energy due to gravity and the energy due to fermi gas. Both
energies are a function of radius and mass. Pressure as a function of mass
and radius is particularly interesting as both these stellar objects have limits
in terms of how dense they can be before they release energy and become
another object. A smaller radius results in higher pressure, and if the radius
continues to shrink, the pressure grows and eventually results in explosion.

2.1 Energy due to Gravity

The gravitational energy as a function of the radius R and mass M can be
written as

EGravity = −G3M2

5R
, (2)
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where G = 6.67×10−11Nm2/kg2 is the universal gravitational constant. The
3/5 constant is because we are assuming both White Dwarfs and Neutron
Stars are of uniform spherical distribution.

2.2 Energy due to Fermi-gas

Fermi gas is the gas of fermions, which are identical particles of half-integer
spin that obey the Pauli principle. Spin is the angular momentum of el-
ementary particles. Examples of fermions include neutrons, electrons, and
protons. In order to find the momentum due to Fermi gas, we derived an
equation to describe this momentum as a function of the stellar object’s
radius and number of particles.

The number of particles can be found by dividing the mass of the particle
in question by the mass of the object. For Neutron Stars, we take the mass
of the star and divide it by the number of neutrons. For White Dwarfs, we
do the same but for electrons.

N =
∫

2
dV dVp
(2πh̄)3

(3)

N =
32π2

9

R3P 3
F

(2πh̄)3
(4)

We can use Eq.(4) to find the Fermi momentum of the star where R
is the radius of the star, N is the number of particles in the star, h̄ =
1.055×10−34Js is the reduced Planck constant. The Planck constant, notated
as h, is fundamental to quantum mechanics. The reduced Planck constant
is used because we are describing the momentum of particles on an atomic
scale, specifically the behavior of neutrons and electrons.

Momentum due to Fermi gas can be written as a function of the number
of particles (Eq. 5).

PF =
3

√
9π

4

h̄

R
N1/3, (5)

Phase space helps us understand why radius is an essential component
of energy in this circumstance. Phase space consists of all possible states
of a system. In phase space, particles do not occupy random space, but
rather are placed directly next to each other in a uniform distribution.2 The
Pauli exclusion principle is a quantum mechanical principle that states two or
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more identical Fermions cannot occupy the same quantum mechanical state.
This condition results in pressure because the matter is being compressed so
severely.

We are mainly concerned with momentum and position, as our PF will
represent the maximum possible momentum of particles in the star. The
Fermi level is defined by the number of particles to fit in a phase space.

As shown in the equation, a smaller radius will result in more pressure.
Because we have a maximum number of particles that can fit in a given
space, this results in increasing pressure inside the star. Thus, we will have
a maximum energy level for each star.

The final equation for the energy due to Fermi gas as a function of radius
and number of particles can be seen in Eq.(6).

EFermi−gas =
9

20
3

√
3π2

2

h̄2N
5
3

mR2
(6)

3 Results

We combined energy due to gravity and energy due to Fermi-gas to get the
total energy of a star. The energy due to gravity is a function of radius and
mass, whereas the energy due to Fermi-gas is a function of radius and the
number of particles in the star. For Neutron Stars, this is neutrons. For
White Dwarfs, this is electrons.

For a total energy (1), we get

ETotal = −G3M2

5R
+

9

20
3

√
3π2

2
· h̄

2N
5
3

mR2
. (7)

Looking back at Eq. (1), we see that our total energy is the sum of the
two energies. While Eq. (7) could be simplified, for the purpose of better
visualizing the combination of energies we leave it as is.

We created a plot for Neutron Stars and White Dwarfs using Eq. (7).
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Figure 1: Total energy of Neutron Star as a function of the star radius
(assuming different masses)

Figure 1 shows the total energy of three Neutron Stars with different solar
masses as a function of radius. Looking at the minimum energy for each star,
we can see that their radius is around the range of 10km.
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Figure 2: Total energy of White Dwarf star as a function of the star radius
(assuming different masses)

Similarly, Figure 2 shows the total energy of three White Dwarfs with
different masses as a function of radius. Looking at the minimum energy for
each star, we see that their radius is around 8000km.

These graphs show that the radius of the star is a major component of
the overall energy.

We then looked at the equations for radius for Neutron Stars and White
Dwarfs. The masses in each equation are different because the mass of the
particle responsible for repulsion in Neutron Stars and White Dwarfs are
different. The equation for the radius of a Neutron star is

RNS = (
9π

4
)
2
3

h̄2

GM
8
3
nM

1
3

, (8)

where Mn is the mass of a neutron and M is the mass of the star. Neutron
Stars are composed of almost entirely neutrons, the mass any other particles
are negligible and thus not considered in our equation.

The equation for the radius of a White Dwarf can be written as

RWD = [(
9π

4
)
2
3

1

2
5
3

]
h̄2

MeM
5
3
nGM

1
3

. (9)
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For White Dwarfs, the main difference in comparison to Neutron Stars
is that we are considering the mass of electrons rather than neutrons when
calculating the radius. White dwarfs contain carbon and oxygen, specifically
Carbon-12, which is made of 6 protons, 6 neutrons, and 6 electrons. White
Dwarfs are composed of electron degenerate matter, which contributes to
the electron degeneracy pressure that keeps White Dwarfs from collapsing
further into a Neutron Star or black hole.3

When we plugged the numbers on the radius equation for Neutron stars,
assuming a star of 1.4M�, we get a radius of 11.025 kilometers, which is
around the value of radius that we got from looking at the graph of energy
of Neutron Star.

Similarly, when we plugged in the numbers on the radius equation for a
White Dwarf, assuming a star of 1M�, we get a radius of 7143 kilometers,
which is around the value of radius that we got from looking at the graph of
energy of White Dwarf.
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